EssentialTech Centre

Climate Action Accelerator

LEURE

Description of Item

Plastic Floor Mat

Mass: 2 kg

- Material: Virgin Polyester from PET granulate
- Plastic packaging material: LDPE film

Functional unit

Use of 1 mattress for 10 years

ltem	Use life	Reference Flows
Virgin Polyester	5	1
Good Quality, Recycled	5	1
Poor Quality, Recycled	3	1.67

Assumptions

Baseline product produced in India, sent to port by freight train, and shipped to warehousing and distribution locations. Assumed o be hand washed once a year. Open burning assumed for end-of-life.

Results of the computation

Stage	Store		kgCO₂e		
Stage		Scenario 1	Scenario 2		
Raw Material		7.87	3.20		
Production		9.22	1.74		
Transportation		1.48	1.48		
Use		0.44	0.44		
End-of-Life		4.37	0.23		

Stage		Human Health		
		Scenario 1	Scenario 2	
Raw Material		4.89E-04	3.37E-04	
Production		1.81E-03	1.46E-03	
Transportation		1.85E-04	1.85E-04	
Use		3.23E-05	3.23E-05	
End-of-Life				
		1.88E-04	1.20E-05	

Variations (% from baseline figures presented above)

To use recycled material

Computation made by considering recycled polyester – of good quality (5 yrs) & bad quality (3 yrs)

kgCO2e Good Bad Quality -20% +33% Human Health

To use renewable energy for production

Computation made by considering 100% solar energy for electricity & heat

kgCO2e Renewable Energy

-32%

To switch to sanitary landfills

Computation made by considering sanitary landfill (moist infiltration class) at end-of-life

kgCO2e

Sanitary Landfill -18%

To transport by air

Computation made by considering air freight for international transportation instead of maritime shipping (emergencies)

kgCO2e Air Freight +34%

Best Possible Scenario

Computation made by considering recycled polyester produced with solar energy, disposed in a sanitary landfill

> kgCO2e Best Case -70%

Good Ba	ad Quality	Renewable Energy	Sanitary Landfill	Air Freight	Best Case
Quality -6%	+57%	-13%	-7%	+13%	-25%
-0%	+37%				

Analyses

combining recycled polyester, renewable energy for electricity and heat at production phase, and landfill instead of open burning account for the impact reduction of the synthetic blanket.

The highest singular impact reduction point is energy for production, providing 32% reduction in GHG emissions and 13% in impact on human health.

	Name	GHG Protocol Categories	kgCO2e/unit
Emission factors	Cradle-to-grave	N/A	23.38
The values displayed here are not per functional unit but per item.	Cradle-to-gate	3.1 Purchased Goods	17.08
	Distribution freight	3.4 and/or 3.9 Transportation	1.48
These values can be used to compute a carbon footprint of an	Use phase	3.11 Use of distributed product	0.44
organisation and can be adapted to a specific case using the tool	End-of life	3.12 End of life of distributed product	4.37

References

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. '*The ecoinvent database version 3 (part I): overview and methodology'*. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: <u>http://link.springer.com/10.1007/s11367-016-1087-8</u>.

Rajput, A., Tobin Greene, C. and Schmid, S. (no date) 'Life Cycle Assessment (LCA) Methodology'. Available at: <u>https://climateactionaccelerator.org/wp-</u> <u>content/uploads/2025/06/EPFL_LCA_methodology_v1.0.</u> <u>pdf</u>.

Repository of life cycle assessments - Climate Action Accelerator (2025). Available at:

https://climateactionaccelerator.org/repository-oflifecycle-assessments/.

About this project

Designing methodologies and performing life cycle analyses of high-impact items to build a GHG emission factor and environmental impact database adapted to the humanitarian sector with the goal of identifying key strategies to reduce environmental impacts.

EPFL EssentialTech Center:

Dr. Grégoire Castella, Dr. Cara Tobin, Emeline Darçot

EPFL LEURE:

Dr. Sascha Nick, Ashima Rajput

International Committee of the Red Cross (ICRC): Anna Maria Liwak, Carmen Garcia Duro

Climate Action Accelerator:

Bruno Jochum, Sonja Schmid, Paolo Sévègnes

Associated expert: Dr. Damien Friot