#### EssentialTech Centre



**Climate Action** Accelerator LEURE

# **Description of Item**



## **Plastic Floor Mat**

- Mass: 860g
- Contents: Virgin polypropylene
- Plastic packaging material: LDPE film ٠

## Functional unit

Use of 1 mattress for 10 years

| ltem                   | Use life | Reference<br>Flows |
|------------------------|----------|--------------------|
| Virgin PP              | 2        | 1                  |
| Good Quality, Recycled | 2        | 1                  |
| Poor Quality, Recycled | 1        | 2                  |
| Straw                  | 1        | 2                  |

# Assumptions

Baseline product produced in India, sent to port by freight train, and shipped to warehousing and distribution locations. No washing is assumed. Open burning assumed for end-of-life.

## **Results of the computation**



| Stage          |  | kgCO₂e     |            |  |  |
|----------------|--|------------|------------|--|--|
| Stage          |  | Scenario 1 | Scenario 2 |  |  |
| Raw Material   |  | 3.07       | 1.60       |  |  |
| Production     |  | 1.62       | 0.23       |  |  |
| Transportation |  | 0.62       | 0.82       |  |  |
| Use            |  | 0.00       | 0.00       |  |  |
| End-of-Life    |  | 2.36       | 0.10       |  |  |
|                |  |            |            |  |  |



| Stage          |   | Human Health |            |  |  |
|----------------|---|--------------|------------|--|--|
|                |   | Scenario 1   | Scenario 2 |  |  |
| Raw Material   |   | 1.74E-04     | 9.05E-05   |  |  |
| Production     |   | 7.72E-05     | 2.96E-05   |  |  |
| Transportation |   | 7.54E-05     | 9.99E-05   |  |  |
| Use            | - | 0.00E+00     | 0.00E+00   |  |  |
| End-of-Life    |   | 5.21E-05     | 2.12E-06   |  |  |

## Variations (% from baseline figures presented above)

#### To use recycled material

Computation made by considering recycled polypropylene - of good quality (2 yrs) & bad quality (1 yr)

> Good **Bad Quality** Quality -17% +67%

To use renewable energy during production Computation made by considering 100% solar energy for electricity & heat

> **Renewable Energy** -18%

#### To switch to sanitary landfills

Computation made by considering sanitary landfill (moist infiltration class) at end-of-life

Sanitary Landfill

-29%

#### To produce locally

Computation made by considering suply & distribution via land transportation (i.e. trucks) instead of maritime shipping

# Locally Made -2%

### **Best Possible Scenario**

Computation made by considering recycled PP produced with solar energy, disposed in a sanitary landfill

> Best Case -64%

> > Best Case -41%

| Good Bad Quality  | Renewable Energy | Sanitary Landfill | Locally Made | В |
|-------------------|------------------|-------------------|--------------|---|
| Quality -16% +69% | -13%             | -13%              | -4%          |   |
|                   |                  |                   |              |   |

Analyses

Combining recycled materials, renewable energy, and better waste management account for the impact reduction of the plastic floor mat with results (reduction of 64% in climate change & 41% in impact on human health) comparable to that of the straw mat (reduction of 57% in climate change & 42% in impact on human health).

However - the assumption of poor-quality straw mats lasting 1 year is circumstantial and could change based on ground realities, therefore the reduction potential would have to be confirmed by additional studies on the lifespan of straw mats in field settings.

|                                                                     | Name                 | GHG Protocol Categories                 | kgCO2e/unit |
|---------------------------------------------------------------------|----------------------|-----------------------------------------|-------------|
| Emission factors                                                    | Cradle-to-grave      | N/A                                     | 7.68        |
| The values displayed here are not per functional unit but per item. | Cradle-to-gate       | 3.1 Purchased Goods                     | 4.69        |
|                                                                     | Distribution freight | 3.4 and/or 3.9 Transportation           | 0.62        |
| These values can be used to<br>compute a carbon footprint of an     | Use phase            | 3.11 Use of distributed product         | 0           |
| organisation and can be adapted to a specific case using the tool   | End-of life          | 3.12 End of life of distributed product | 2.36        |

#### References

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. 'The ecoinvent database version 3 (part I): overview and methodology'. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8.

Rajput, A., Tobin Greene, C. and Schmid, S. (no date) 'Life Cycle Assessment (LCA) Methodology'. Available at: https://climateactionaccelerator.org/wpcontent/uploads/2025/06/EPFL\_LCA\_methodology\_v1.0. <u>pdf</u>.

Repository of life cycle assessments - Climate Action Accelerator (2025). Available at:

https://climateactionaccelerator.org/repository-of-<u>lifecycle-assessments/</u>.

#### About this project

Designing methodologies and performing life cycle analyses of high-impact items to build a GHG emission factor and environmental impact database adapted to the humanitarian sector with the goal of identifying key strategies to reduce environmental impacts.

#### **EPFL EssentialTech Center:**

Dr. Grégoire Castella, Dr. Cara Tobin, Emeline Darçot

## **EPFL LEURE:**

Dr. Sascha Nick, Ashima Rajput

International Committee of the Red Cross (ICRC): Anna Maria Liwak, Carmen Garcia Duro

### **Climate Action Accelerator:**

Bruno Jochum, Sonja Schmid, Paolo Sévègnes

Associated expert: Dr. Damien Friot