

Single-use Pad

- Usage: 10 per period
- Materials: Polyethylene,
- paper, glue, wood pulp Mass: 11g

Reusable Pad

- Usage: 2 per period
 - Materials: Polyester,
 - cotton Mass: 43g

Functional unit

Use of pads for 12 periods

ltem	Pads per period	Reference Flows
Single-Use	10	120
Reusable	2	2

LEURE

Assumptions

Single Use pads are assumed to be bought locally whereas reusable pads are assumed to be produced in India and shipped to distribution location. Washing of hands assumed after every use of single-use pad, laundry assumed for reusable. All waste is burnt

Results of the computation

Stage		kgCO₂e		
		Single Use	Reusable	
Raw Material		4.0302	O.1161	
Production		0.3809	0.0184	
Transportation		0.3273	0.0001	
Use		6.8400	2.0160	
End-of-Life		1.0734	0.1462	

Store	Store		Human Health		
Stage		Single Use	Reusable		
Raw Material		2.53E-04	7.98E-06		
Production		2.19E-05	5.70E-07		
Transportation		3.94E-05	7.84E-09		
Use		5.29E-04	1.57E-04		
End-of-Life		2.11E-05	6.12E-06		

Key Contexts

This study is uses the work of Fourcassier, S. et al. (2022) to establish GHG Emission Factors for single-use & reusable hygienic pads adapted to the humanitarian context, and analyse the environmental impact of the product's life cycle to identify key levers for impact reduction through a comparison between the two products for an extended time period.

Hygienic or sanitary pads are procured in large volumes by humanitarian organization. A standard single-use pad can only be used for up to 4 hours, and therefore creates a large volume of waste due to its use. A reusable pad can be washed and reword repeatedly for up to 2 years. This study compares these products to shed light on impact reductions that can take place in these contexts.

In humanitarian contexts, water supply could be precarious and high-impact, therefore this study takes into account the use of water to formulate the cradle-to-grave factor for these pads. Additionally, the use of soap and water to wash hands in

considered during the use phase of the single-use pad, to further reflect its wastefulness.

Changing the type of hygienic pad used can significantly lower the impact of the item, when assuming effective reuse of the pad, in this case for 12 periods, the reduction in climate change is 82% and impact on human health is 80%

The impacts to local ecosystems and water systems must be studied to expand on this result.

Emission factors	Name	GHG Protocol Categories	kgCO2e/unit	
			Single-Use	Reusable
The values displayed here are not per functional unit but per item.	Cradle-to-grave	N/A	O.11	1.15
	Cradle-to-gate	3.1 Purchased Goods	0.04	0.07
These values can be used to compute a carbon footprint of an				
organisation and can be adapted to				

References

Fourcassier, S. et al. (2022) 'Menstrual products: A comparable Life Cycle Assessment', Cleaner Environmental Systems, 7, p. 100096. Available at: https://doi.org/10.1016/j.cesys.2022.100096

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. 'The ecoinvent database version 3 (part I): overview and methodology'. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218-1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8.

Rajput, A., Tobin Greene, C. and Schmid, S. (no date) 'Life Cycle Assessment (LCA) Methodology'. Available at: https://climateactionaccelerator.org/wpcontent/uploads/2025/06/EPFL_LCA_methodology_v1.0. <u>pdf</u>.

Repository of life cycle assessments - Climate Action Accelerator (2025). Available at:

https://climateactionaccelerator.org/repository-oflifecycle-assessments/.

About this project

Designing methodologies and performing life cycle analyses of high-impact items to build a GHG emission factor and environmental impact database adapted to the humanitarian sector with the goal of identifying key strategies to reduce environmental impacts.

EPFL EssentialTech Center:

Dr. Grégoire Castella, Dr. Cara Tobin, Emeline Darçot

EPFL LEURE:

Dr. Sascha Nick, Ashima Rajput

International Committee of the Red Cross (ICRC): Anna Maria Liwak, Carmen Garcia Duro

Climate Action Accelerator:

Bruno Jochum, Sonja Schmid, Paolo Sévègnes

Associated expert: Dr. Damien Friot